Respuesta :

s1m1

Answer:

Step-by-step explanation:

[tex]\frac{x^{2} -x-12}{x+4} * \frac{2x^{2}-32 }{x^{2} -8x+16}[/tex]  rewrite as multiplication

[tex]\frac{x^{2} +3x-4x-12}{x+4} * \frac{2(x^{2}-16) }{x^{2} -8x+16}[/tex]  look to factor

[tex]\frac{x(x+3)-4(x+3)}{x+4} * \frac{2(x-4)(x+4) }{(x-4)^{2}}[/tex]  , difference of 2 squares and perfect square

[tex]\frac{(x+3)(x-4)}{x+4} * \frac{2(x-4)(x+4) }{(x-4)^{2}}[/tex], finish factoring and simplify

2(x+3)