Answer/Step-by-step explanation:
Recall: SOH CAH TOA
✔️Find <A:
Reference angle (θ) = A
Opposite side = 14 cm
Hypotenuse = 20 cm
Apply SOH:
Sin θ = Opp/Hyp
Substitute
Sin A = 14/20
A = [tex] sin^{-1}(\frac{14}{20}) [/tex]
m<A = 44° (nearest whole number)
✔️Find <C:
Reference angle (θ) = C
Adjacent side = 14 cm
Hypotenuse = 20 cm
Apply CAH:
Cos θ = Adj/Hyp
Substitute
Cos C = 14/20
C = [tex] cos^{-1}(\frac{14}{20}) [/tex]
m<C = 46° (nearest whole number)
✔️Find AB:
Reference angle (θ) = C = 46°
Opposite side = AB
Hypotenuse = 20 cm
Apply SOH:
Sin θ = Opp/Hyp
Sin 46° = AB/20
20*Sin 46° = AB
AB = 14.4 cm (one decimal place)