Respuesta :

Answer:

option A

Step-by-step explanation:

[tex]\frac{x+ 3}{12x} \ \cdot \ \frac{4x}{x^2 +x - 6}\\\\= \frac{x+ 3}{12x} \ \cdot\ \frac{4x}{x^2 +3x - 2x - 6}\\\\= \frac{x+ 3}{12x} \cdot \frac{4x}{x(x + 3) -2(x+3)}\\\\= \frac{x+ 3}{12x} \cdot \frac{4x}{(x + 3)(x -2)}\\\\= \frac{1}{12x} \ \cdot \ \frac{4x}{(x - 2)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\\\= \frac{1}{3} \ \cdot \ \frac{1}{(x - 2)}\\\\= \frac{1}{3(x - 2) }[/tex]