Respuesta :

Nayefx

Answer:

[tex]\displaystyle {f}^{ - 1}(x) = \frac{1}{4} (x - 18x + 85)[/tex]

Step-by-step explanation:

we would like to find the inverse of the following function:

[tex] \displaystyle f(x) = 9 + \sqrt{4x - 4} [/tex]

to do so substitute y for f(x):

[tex] \displaystyle y= 9 + \sqrt{4x - 4} [/tex]

interchange variables:

[tex] \displaystyle x= 9 + \sqrt{4y - 4} [/tex]

cancel 9 from both sides:

[tex] \displaystyle \sqrt{4y - 4} = x - 9[/tex]

square both sides:

[tex] \displaystyle 4y - 4= x - 18x + 81[/tex]

add 4 in both sides:

[tex]\displaystyle 4y = x - 18x + 85[/tex]

divide both sides by 4:

[tex]\displaystyle y = \frac{1}{4} (x - 18x + 85)[/tex]

substitute back:

[tex]\displaystyle {f}^{ - 1}(x) = \frac{1}{4} (x - 18x + 85)[/tex]

and we're done!

Answer:

The inverse is 1/4(x-9)^2+1

Step-by-step explanation:

y = 9+ sqrt(4x-4)

Exchange x and y

x =  9+ sqrt(4y-4)

Solve for y

Subtract 9 from each side

x-9 = sqrt(4y-4)

Square each side

(x-9)^2 = 4y-4

Add 4 to each side

(x-9)^2 +4 = 4y

Divide by 4

1/4(x-9)^2+ 4/4 = 4y/4

1/4(x-9)^2+1 = y

The inverse is 1/4(x-9)^2+1