Respuesta :

Answer:

lhs = (5+2√3)/(7+4√3)

= [(5+2√3)(7-4√3)]/[(7-4√3)(7+4√3)]

=[35-20√3+14√3-24]/[7²-(4√3)²]

=[11-6√3]/[49-48]

=11-6√3

therefore

11-6√3 = a+b√3

compare both sides

a= 11, b= -6

Step-by-step explanation:

Hope this answer helps you :)

Have a great day

Mark brainliest

Answer:

a = 11, b = 6

Step-by-step explanation:

Given

[tex]\frac{5+2\sqrt{3} }{7+4\sqrt{3} }[/tex]

Rationalise the denominator by multiplying numerator/ denominator by the conjugate of the denominator.

The conjugate of 7 + 4[tex]\sqrt{3}[/tex] is 7 - 4[tex]\sqrt{3}[/tex]

= [tex]\frac{(5+2\sqrt{3})(7-4\sqrt{3}) }{(7+4\sqrt{3})(7-4\sqrt{3} }[/tex] ← expand numerator/ denominator using FOIL

= [tex]\frac{35-20\sqrt{3}+14\sqrt{3}-24 }{49-28\sqrt{3}+28\sqrt{3}-48 }[/tex]

= [tex]\frac{11-6\sqrt{3} }{1}[/tex]

= 11 - 6[tex]\sqrt{3}[/tex]

with a = 11 and b = 6