Answer:
F = 1010 Lb
the tension on the cable is greater than its resistance, which is why the plan is not viable
Explanation:
For this exercise we can use the kinematic relations to find the acceleration and with Newton's second law find the force to which the cable is subjected.
v = v₀ + a t
how the car comes out of rest v₀ = 0
a = v / t
let's reduce to the english system
v = 45 mph (5280 ft / 1 mile) (1h / 3600) = 66 ft / s
let's calculate
a = 66/10
a = 6.6 ft / s²
now let's write Newton's second law
X axis
Fₓ = ma
with trigonometry
cos 20 = Fₓ / F
Fₓ = F cos 20
we substitute
F cos 20 = m a
F = m a / cos20
W = mg
F = [tex]\frac{W}{g} \ \frac{a}{cos 20}[/tex]
let's calculate
F = [tex]\frac{2000}{32} \ \frac{6.6 }{cos20}[/tex](2000/32) 6.6 / cos 20
F = 1010 Lb
Under these conditions, the tension on the cable is greater than its resistance, which is why the plan is not viable.