Answer:
the MTTF of the transceiver is 50.17
Explanation:
Given the data in the question;
failure modes = 0.1 failure per hour
system reliability = 0.85
mission time = 5 hours
Now, we know that the reliability equation for this situation is;
R(t) = [ 1 - ( 1 - [tex]e^{-0.1t[/tex] )³] [tex]e^{-t/MTTF[/tex]
so we substitute
R(5) = [ 1 - ( 1 - [tex]e^{-0.1(5)[/tex] )³] [tex]e^{-5/MTTF[/tex] = 0.85
[ 1 - ( 1 - [tex]e^{-0.5[/tex] )³] [tex]e^{-5/MTTF[/tex] = 0.85
[ 1 - ( 0.393469 )³] [tex]e^{-5/MTTF[/tex] = 0.85
[ 1 - 0.06091 ] [tex]e^{-5/MTTF[/tex] = 0.85
0.9391 [tex]e^{-5/MTTF[/tex] = 0.85
[tex]e^{-5/MTTF[/tex] = 0.85 / 0.9391
[tex]e^{-5/MTTF[/tex] = 0.90512
MTTF = 5 / -ln( 0.90512 )
MTTF = 50.17
Therefore, the MTTF of the transceiver is 50.17