Answer:
a ) Upper bound of CI Â is 7803483.87
b) The new upper bound is  8039767.74
Step-by-step explanation:
From sample data:
sample size   n  =  60
sample mean  x = 7500000
Sample standard deviation  s  =  1200000
a) Confidence Interval 95 %  then  significance level  α = 5 % o  α = 0.05
α/2 = 0.025   z(c) from z-table is  z(c) = 1.96
CI  95 % =  (  x  ±  z(c) * s/√n
CI  95 % =  (  7500000  ±  1.96 * 1200000/√60
CI  95 % =  (  7500000  ±  303483.87 )
CI Â 95 % = Â ( 7196516.13 Â ; Â 7803483.87)
Then upper bound of CI Â is 7803483.87
b) The company has to decrease the significance level equivalent to widen the confidence interval.
If CI now is  99.95 %   significance level is α = 0.0005 and
α/2 = 0.00025   z(c) for that α/2   is from z-table  z(c) ≈ 3.486
CI 99.95 %  = ( x ±  z(c)*s/√n
CI 99.95 %  =  7500000 ±  3.486*1200000/ √60
CI 99.95 %  =  (7500000 ±539767.74)
CI 99.95 % Â = ( 6960232.26 ; 8039767.74)
The new upper bound is  8039767.74