Answer:
[tex]\bar x = 1.4896[/tex]
[tex]Median = 1.525[/tex]
7 is an outlier
Step-by-step explanation:
Given
See comment for dataset
Solving (a): The mean
The mean is calculated as:
[tex]\bar x = \frac{\sum x}{n}[/tex]
So, we have:
[tex]\bar x = \frac{2.53 +1.33 +0.64 +2.55 +0.67 +0.57 +............+2.03 +1.78}{50}[/tex]
[tex]\bar x = \frac{74.48}{50}[/tex]
[tex]\bar x = 1.4896[/tex]
Solving (b): The median
First, we sort the data:
[tex]0.01, 0.01, 0.08, 0.14, 0.24, 0.35, 0.57, 0.64, 0.65, 0.67,[/tex]
[tex]0.69, 0.74, 0.81, 0.82, 0.92, 0.99, 1.01, 1.04, 1.15, 1.16, 1.33,[/tex]
[tex]1.41, 1.45, 1.48, 1.52, 1.53, 1.58, 1.61, 1.62, 1.73, 1.77, 1.78, 1.84,[/tex]
[tex]1.98, 2.01, 2.02, 2.03, 2.06, 2.06, 2.31, 2.41, 2.53, 2.55, 2.59,[/tex]
[tex]2.66, 2.74, 2.74, 2.77, 2.77, 2.91[/tex]
The median position is:
[tex]Median = \frac{n + 1}{2}[/tex]
[tex]Median = \frac{50 + 1}{2}[/tex]
[tex]Median = \frac{51}{2}[/tex]
[tex]Median = 25.5th[/tex]
This means that the median is the average of the 25th and the 26th item.
So:
[tex]Median = \frac{1.52+1.53}{2}[/tex]
[tex]Median = \frac{3.05}{2}[/tex]
[tex]Median = 1.525[/tex]
Solving (c): Is 7 an outlier
Yes; 7 is an outlier.
Because the range of the dataset (0.01 to 2.92) is far from 7.