use algebraic manipulation to find the minimum sum-of-products expression for the function x1x2'x3' + x1x2x4+x1x2'x3x4'

Respuesta :

Answer:

sum of products expression = x₁x₂x₃'  +  x₁x₂'x₄  + x₁x₂x₄

Step-by-step explanation:

Given function ( f ) = x₁x₂'x₃'  +  x₁x₂x₄ + x₁x₂'x₃x₄'

using algebraic manipulation

f = x₁ [ x₂'x₃'  +  x₂x₄ + x₂'x₃x₄' ]

 =  x₁ [ x₂'( x₃' + x₃x₄') +  x₂x₄  ]

next apply Boolean rules

a + bc = ( a + b )(a + c )

a' + a =1

hence

minimum sum-of-products expression = x₁x₂x₃'  +  x₁x₂'x₄  + x₁x₂x₄