Respuesta :

Answer:

[tex]\mathbf{ \dfrac{\pi}{675}\Big[ 34\sqrt{34} -125\Big] }[/tex]

Step-by-step explanation:

The curve x = f(y)

The area of the surface around the y-axis from y = a → y = b is:

[tex]=\int^b_a 2 \pi x \sqrt{1 + (\dfrac{dx}{dy})^2} \ dy[/tex]

From the given curve:

[tex]y = (5x)^{^{\dfrac{1}{3}}[/tex] ; assuming the region bounded by the curve is 0 ≤ y ≤ 1

So;

[tex]y = (5x)^{^{\dfrac{1}{3}}[/tex]

5x = y³

[tex]x = \dfrac{1}{5}y^3[/tex]

The differential of the above equation Is:

[tex]\dfrac{dx}{dy}= \dfrac{1}{5} \times (3y^2)[/tex]

[tex]\dfrac{dx}{dy}= \dfrac{3}{5}y^2[/tex]

Now, we have the area of the surface produced around the curve [tex]x = \dfrac{1}{5}y^3[/tex] through the y axis from the region y = 0 to y = 1

[tex]= \int ^1_0 2 \pi \dfrac{1}{5}y^3 \sqrt{1 + (\dfrac{3}{5}y^2)^2} \ dy[/tex]

[tex]= \dfrac{ 2 \pi}{5} \int ^1_0 y^3 \sqrt{1 + \dfrac{9}{25}y^4} \ dy[/tex]

[tex]= \dfrac{ 2 \pi}{5} \int ^1_0 y^3 \sqrt{ \dfrac{25+9y^4}{25}} \ dy[/tex]

[tex]= \dfrac{ 2 \pi}{5} \int ^1_0 y^3 \dfrac{\sqrt{25+9y^4}}{5}} \ dy[/tex]

[tex]= \dfrac{ 2 \pi}{25} \int ^1_0 y^3 \sqrt{25+9y^4}} \ dy[/tex]

Let make [tex]u = \sqrt{25+9y^4}[/tex]

It implies that:

[tex]u^3 = (25+9y^4)\sqrt{25+9y^4}[/tex]

[tex]u = \sqrt{25+9y^4} \\\\ du = \dfrac{1}{2\sqrt{25 +9y^4}}(36y^3) \ dy[/tex]

[tex]du = \dfrac{18y^3}{\sqrt{25 +9y^4}}\ dy[/tex]

[tex]y^3dy = \dfrac{1}{18}\sqrt{25+9y^4} \ du[/tex]

when y = 0 ;

[tex]u = \sqrt{25+ 9(0)^4}[/tex]

[tex]u = \sqrt{25}[/tex]

u = 5

when y = 1;

[tex]u = \sqrt{25+ 9(1)^4}[/tex]

[tex]u = \sqrt{25+9}[/tex]

[tex]u = \sqrt{34}[/tex]

The equation [tex]\dfrac{ 2 \pi}{25} \int ^1_0 y^3 \sqrt{25+9y^4}} \ dy[/tex] can be written as:

[tex]= \dfrac{2 \pi}{25} \int ^{\sqrt{34}}_{5} (u ) \dfrac{1}{18} \ udu[/tex]

[tex]= \dfrac{2 \pi}{25\times 18} \int ^{\sqrt{34}}_{5} (u ) \ udu[/tex]

[tex]= \dfrac{\pi}{225} \int ^{\sqrt{34}}_{5} (u^2 ) \ udu[/tex]

[tex]= \dfrac{\pi}{225}\Big[ \dfrac{u^3}{3} \Big] ^{\sqrt{34}}_{3}\\[/tex]

[tex]\mathbf{= \dfrac{\pi}{675}\Big[ 34\sqrt{34} -125\Big] }[/tex]