Given:
M is the midpoint of AB.
M(2,0) and A(-3, 3).
To find:
The coordinates of point B.
Solution:
Midpoint formula:
[tex]Midpoint=\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right)[/tex]
Let the coordinates of point B are (a,b). Then, using the midpoint formula, we get
[tex](2,0)=\left(\dfrac{-3+a}{2},\dfrac{3+b}{2}\right)[/tex]
On comparing both sides, we get
[tex]\dfrac{-3+a}{2}=2[/tex]
[tex]-3+a=2\times 2[/tex]
[tex]a=4+3[/tex]
[tex]a=7[/tex]
And,
[tex]\dfrac{3+b}{2}=0[/tex]
[tex]3+b=0[/tex]
[tex]3+b-3=0-3[/tex]
[tex]b=-3[/tex]
Therefore, the coordinates of point B are (7,-3).