Given that ƒ(x) = x2 + 1 and g(x) = –3, multiply the functions (g · ƒ)(x). Question 8 options: A) (g · ƒ)(x) = –3x2 – 3 B) (g · ƒ)(x) = –3x2 + 3 C) (g · ƒ)(x) = 3x2 – 3 D) (g · ƒ)(x) = 3x2 + 3

Respuesta :

Answer:

A

Step-by-step explanation:

We are given the two functions:

[tex]f(x)=x^2+1\text{ and } g(x)=-3[/tex]

And we want to find:

[tex](g\cdot f)(x)[/tex]

This is equivalent to:

[tex]=g(x)\cdot f(x)[/tex]

Substitute:

[tex]=(-3)\cdot (x^2+1)[/tex]

Distribute:

[tex]=-3x^2-3[/tex]

Therefore:

[tex](g\cdot f)(x)=-3x^2-3[/tex]

So, our answer is A.

Answer:

(g · ƒ)(x) = –3x2 – 3

Step-by-step explanation:I took the test