Given:
In [tex]\Delta WXY, m\angle Y=90^\circ, WY=5, XW=13[/tex] and [tex]YX=12[/tex].
To find:
The ratio represents the cosine of [tex]\angle W[/tex].
Solution:
In [tex]\Delta WXY, m\angle Y=90^\circ[/tex]. It means the opposite side of angle Y, i.e., XW is the hypotenuse of the triangle.
In a right angle triangle,
[tex]\cos \theta =\dfrac{Base}{Hypotenuse}[/tex]
In the given triangle,
[tex]\cos W=\dfrac{WY}{XW}[/tex]
[tex]\cos W=\dfrac{5}{13}[/tex]
Therefore, the required cosine ratio is [tex]\dfrac{5}{13}[/tex].