Answer:
a) The mean is of [tex]\mu = 0.16[/tex]
b) The standard deviation is of [tex]s = 0.008[/tex]
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Question a:
Exactly 16% of all applications were from minority members
This means [tex]p = 0.16[/tex], and thus, the mean is of [tex]\mu = p = 0.16[/tex]
b. Find the standard deviation of p.
2100 open positions, thus [tex]n = 2100[/tex].
[tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
[tex]s = \sqrt{\frac{0.16*0.84}{2100}}[/tex]
[tex]s = 0.008[/tex]
The standard deviation is of [tex]s = 0.008[/tex]