Respuesta :

Answer:

B

Step-by-step explanation:

We are given that Expression One is:

[tex]2\cdot 10^x[/tex]

And Expression Two is:

[tex]4\cdot 10^{x+y}[/tex]

We are given that the value of Expression Two is 20,000 times greater than the value of Expression One. And we want to find the value of y. In other words:

[tex]4\cdot 10^{x+y}=20000(2\cdot 10^x)[/tex]

We can divide both sides by four:

[tex]10^{x+y}=10000\cdot 10^x[/tex]

Recall that:

[tex]x^a\cdot x^b=x^{a+b}[/tex]

Therefore:

[tex]10^x\cdot 10^y=10000\cdot 10^x[/tex]

Divide both sides by 10ˣ:

[tex]10^y=10000[/tex]

Solve for y:

[tex]\displaystyle y = \log_{10}10000 = 4[/tex]

Our answer is B.