Answer:
Following are the solution to the given question:
Step-by-step explanation:
In this question, firstly we calculating the [tex]\bar{x} \ \ and \ \ s[/tex]
[tex]\bar{x}=11.89 \\\\s = 2.52\\\\n = 9\\\\\alpha=0.05\\[/tex]
[tex]H_0 : u \leq 10\\\\ H_1 : u > 10[/tex]
It is an upper test  and testing the statistics:
[tex]t=\frac{\bar{x}-\mu }{\frac{s}{\sqrt{n}}}\\\\t=\frac{11.89-10 }{\frac{2.52}{\sqrt{9}}}\\\\t=2.25\\\\[/tex]
So, the test statistics [tex]t=2.25[/tex]
[tex]\alpha=0.05 \\\\ d.f = n-1\\\\[/tex]
   [tex]=9-1\\\\=8[/tex]
critical value =2.306 ( using t-table ) [tex]critical\ value >\ test\ statistics , \ Fail\ to\ Reject\ H_0[/tex]
Decision: We should not reject the null hypothesis.