Answer:
[tex]P(x< 240) = 0.0521[/tex]
Step-by-step explanation:
Given
[tex]\bar x = 266[/tex]
[tex]\sigma = 16[/tex]
Required
[tex]P(x < 240)[/tex] --- pregnancy will last less than 240 days
First, calculate the z score
[tex]z = \frac{x - \bar x}{\sigma}[/tex]
Where:
[tex]x = 240[/tex]
So, we have:
[tex]z = \frac{240 - 266}{16}[/tex]
[tex]z = \frac{-26}{16}[/tex]
[tex]z = -1.625[/tex]
So:
[tex]P(x< 240) = P(z < -1.625)[/tex]
From z probability:
[tex]P(z < -1.625) = 0.052081[/tex]
[tex]P(z < -1.625) = 0.0521[/tex] --- approximated
So:
[tex]P(x< 240) = 0.0521[/tex]