Respuesta :
Answer:
Step-by-step explanation:
X Y X² Y² XY
993 50 986049 2500 49650
995 60 990025 3600 59700
994 60 988036 3600 59640
1006 40 1012036 1600 40240
942 120 887364 14400 113040
1002 40 1004004 1600 40080
[tex]\sum X: 5932[/tex] [tex]\sum Y : 370[/tex] [tex]\sum X^2 : 5867514[/tex] [tex]\sum Y^2 = 27300[/tex] [tex]\sum XY : 362350[/tex]
To determine the regression:
[tex]Mean \ (X) = \dfrac{\sum X }{n} \\ \\ = \dfrac{5932}{6} \\ \\ = 988.67[/tex]
[tex]Mean \ (Y) = \dfrac{\sum Y}{n} \\ \\ = \dfrac{370}{6} \\ \\ = 61.67[/tex]
Intercept [tex]b_o = \dfrac{\sum YX *\sum X^2 - \sum X \sum Y}{n(\sum X^2) - (\sum X)^2}[/tex]
[tex]=\dfrac{370(5867514) -(5932)(370)}{6(5867514) - (5932)^2}[/tex]
= 131760.9563
Slope [tex]b_1 = \dfrac{n(\sum XY) -(\sum X *\sum Y) }{n(\sum X^2)-(\sum X)^2}[/tex]
[tex]b_1 = \dfrac{6(362350) -(5932*370) }{6(5867514)-(5932)^2}[/tex]
[tex]b_1 = -1.2600[/tex]
The regression line equation [tex]Y = b_o +b_1X[/tex]
[tex]Y = 131760.96 -1.2600 X[/tex]
We then make a comparison of the slope of the equation to y = mx+c
slope of the equation = -1.2600
the y-intercept corresponds to when X = 0, thus:
y-intercept = 131760.9563
Yes, it is reasonable to interpret the y-intercept of the regression line, Using atmospheric pressure as an explanatory variable due to the fact that:
X is the independent variable and Y exists as the dependent variable.