Answer:
[tex]x =2[/tex]
Step-by-step explanation:
Given
[tex]\log x\³+ \log5x =5\log2-\log\frac{2}{5}[/tex]
Required
Find x
We have:
[tex]\log x\³+ \log5x =5\log2-\log\frac{2}{5}[/tex]
Apply exponent rule
[tex]\log x\³+ \log5x =\log2^5-\log\frac{2}{5}[/tex]
[tex]\log x\³+ \log5x =\log32 -\log\frac{2}{5}[/tex]
Apply product and quotient rules of logarithm
[tex]\log (x\³* 5x) =\log(32 \div \frac{2}{5})[/tex]
[tex]\log (5x^4) =\log(80)[/tex]
Cancel log on both sides
[tex]5x^4 = 80[/tex]
Divide by 5
[tex]x^4 = 16[/tex]
Take 4th roots of both sides
[tex]x =2[/tex]