Answer:
[tex](-3,4/375)[/tex]
Step-by-step explanation:
Given
[tex]f(x) = \frac{1}{6}(\frac{2}{5})^x[/tex]
Reflection: Across y-axis
Required
The ordered pair on g(x)
The rule of reflection across y-axis is:
[tex](x,y) = (-x,y)[/tex]
So, we have:
[tex]g(x) = f(-x)[/tex]
f(-x) is:
[tex]f(-x) = \frac{1}{6}(\frac{2}{5})^{-x[/tex]
Recall that:
[tex]g(x) = f(-x)[/tex]
Hence:
[tex]g(x) = \frac{1}{6}(\frac{2}{5})^{-x[/tex]
From the options (missing in the question), the ordered pair is:
[tex](-3,4/375)[/tex]
To check this, we have:
[tex]g(x) = \frac{1}{6}(\frac{2}{5})^{-x[/tex]
[tex]g(-3) = \frac{1}{6}(\frac{2}{5})^{--3[/tex]
[tex]g(-3) = \frac{1}{6}(\frac{2}{5})^{3[/tex]
Expand
[tex]g(-3) = \frac{1}{6}(\frac{8}{125})[/tex]
Simplify
[tex]g(-3) = \frac{1}{3}(\frac{4}{125})[/tex]
Open bracket
[tex]g(-3) = \frac{4}{375}[/tex]