The function f(x) = One-sixth (two-fifths) Superscript x is reflected across the y-axis to create the function g(x). Which ordered pair is on g(x)?

Respuesta :

Answer:

[tex](-3,4/375)[/tex]

Step-by-step explanation:

Given

[tex]f(x) = \frac{1}{6}(\frac{2}{5})^x[/tex]

Reflection: Across y-axis

Required

The ordered pair on g(x)

The rule of reflection across y-axis is:

[tex](x,y) = (-x,y)[/tex]

So, we have:

[tex]g(x) = f(-x)[/tex]

f(-x) is:

[tex]f(-x) = \frac{1}{6}(\frac{2}{5})^{-x[/tex]

Recall that:

[tex]g(x) = f(-x)[/tex]

Hence:

[tex]g(x) = \frac{1}{6}(\frac{2}{5})^{-x[/tex]

From the options (missing in the question), the ordered pair is:

[tex](-3,4/375)[/tex]

To check this, we have:

[tex]g(x) = \frac{1}{6}(\frac{2}{5})^{-x[/tex]

[tex]g(-3) = \frac{1}{6}(\frac{2}{5})^{--3[/tex]

[tex]g(-3) = \frac{1}{6}(\frac{2}{5})^{3[/tex]

Expand

[tex]g(-3) = \frac{1}{6}(\frac{8}{125})[/tex]

Simplify

[tex]g(-3) = \frac{1}{3}(\frac{4}{125})[/tex]

Open bracket

[tex]g(-3) = \frac{4}{375}[/tex]