Respuesta :

Answer:

[tex]\cos(\theta) = -\frac{\sqrt{17}}{6}[/tex]

Step-by-step explanation:

Given

[tex]\tan(\theta) = -\sqrt{\frac{19}{17}}[/tex]

Required

Determine [tex]\cos(\theta)[/tex]

We have:

[tex]\tan(\theta) = -\sqrt{\frac{19}{17}}[/tex]

Split

[tex]\tan(\theta) = -\frac{\sqrt{19}}{\sqrt{17}}[/tex]

tan is calculated as:

[tex]\tan(theta) = \frac{opposite}{adjacent}[/tex]

So:

[tex]Opposite = -\sqrt{19[/tex]

[tex]Adjacent = \sqrt{17[/tex]

And:

[tex]Hypotenuse^2 = Opposite^2 + Adjacent^2[/tex] --- Pythagoras theorem

[tex]Hypotenuse^2 = (-\sqrt{19})^2 + (\sqrt{17})^2[/tex]

[tex]Hypotenuse^2 = 19 + 17[/tex]

[tex]Hypotenuse^2 = 36[/tex]

Take square roots

[tex]Hypotenuse = 6[/tex]

[tex]\cos(\theta) = \frac{Adjacent}{Hypotenuse}[/tex]

[tex]\cos(\theta) = \frac{\sqrt{17}}{6}[/tex]

Since it is in the second quadrant, then:

[tex]\cos(\theta) = -\frac{\sqrt{17}}{6}[/tex]