Respuesta :

r3t40

We have to figure out what the product of DA is,

[tex]\begin{bmatrix}-1&2&3\\8&-4&0\\6&7&1\\ \end{bmatrix}\begin{bmatrix}1\\3\\5\\ \end{bmatrix}=\begin{bmatrix}a\\b\\c\\ \end{bmatrix}[/tex]

We know that,

[tex]\begin{bmatrix}a&b&c\\d&e&f\\g&h&i\\\end{bmatrix}\begin{bmatrix}x\\y\\z\\\end{bmatrix}=\begin{bmatrix}ax+by+cz\\dx+ey+fz\\gx+hy+iz\\\end{bmatrix}[/tex]

So,

[tex]a=-1\cdot1+2\cdot3+3\cdot5=-1+6+15=20[/tex]

[tex]b=8\cdot1+(-4)\cdot3+0\cdot5=8-12=-4[/tex]

[tex]c=6\cdot1+7\cdot3+1\cdot5=6+21+5=32[/tex]

So the solution is,

[tex]a,b,c=\boxed{20,-4,32}[/tex]

Hope this helps :)