Respuesta :

Answer:

[tex]x = \frac{log\sqrt{-1/6}}{log2}[/tex]

Step-by-step explanation:

Given the expression

[tex]2^{2x}+3-7(2^{2x}+1)+3=0[/tex]

Let [tex]P=2^x[/tex]

Substituting into the expression, we will have:

[tex]P^2+3-7(P^2+1)+3=0\\Expand\\P^2+3-7P^2-7+3=0\\-6P^2-1=0\\6P^2=-1\\p^2=-1/6\\P=\sqrt{-1/6}[/tex]

Since:

[tex]P=2^x\\2^x=\sqrt{-1/6}\\xlog2=log(\sqrt{-1/6}) \\x = \frac{log\sqrt{-1/6}}{log2}[/tex]