Answer:
[tex]P(Y| X = 65)=66[/tex]
Step-by-step explanation:
From the question we are told that:
Mean[tex]\=x=70[/tex]
Standard Deviation [tex]\sigma=3[/tex]
Variance [tex]\sigma^2=2[/tex]
Generally the equation for Variance of Prediction is mathematically given by
[tex]\sigma_{p}^2=\sigma_{p}'^2*(1-r^2)[/tex]
Where
[tex]\sigma_{p}'^2=variance\ of\ predictor[/tex]
Therefore
[tex]2=3^2*(1-r^2)\\\\r=0.88[/tex]
Therefore
The Average score of student in 2nd test Β
[tex]P(Y| X = x) = \mu +\frac{p\sigma}{\sigma(x β\mu_X)}[/tex]
[tex]P(Y| X = 65) = 70 +0.88\frac{3}{3)}*(65-70)[/tex]
[tex]P(Y| X = 65)=66[/tex]