A parallel-plate capacitor consists of two plates, each with an area of 29 cm2cm2 separated by 3.0 mmmm. The charge on the capacitor is 7.8 nCnC . A proton is released from rest next to the positive plate. Part A How long does it take for the proton to reach the negative plate

Respuesta :

Answer:

   t = 2.09 10⁻³ s

Explanation:

We must solve this problem in parts, first we look for the acceleration of the electron and then the time to travel the distance

let's start with Newton's second law

        ∑ F = m a

the force is electric

        F = q E

         

we substitute

        q E = m a

        a = [tex]\frac{q}{m} \ E[/tex]

        a = [tex]\frac{1.6 \ 10^{-19}}{ 9.1 \ 10^{-31} } \ 7.8 \ 10^{-9}[/tex]

        a = 1.37 10³ m / s²

now we can use kinematics

        x = v₀ t + ½ a t²

indicate that rest starts v₀ = 0

        x = 0 + ½ a t²

        t = [tex]\sqrt{\frac{2x}{a} }[/tex]

        t = [tex]\sqrt{\frac {2 \ 3 \ 10^{-3}}{ 1.37 \ 10^3} }[/tex]

        t = 2.09 10⁻³ s