A veggie wrap at David's Deli is composed of 33 different vegetables and 22 different condiments wrapped up in a tortilla. If there are 66 vegetables, 66 condiments, and 55 types of tortilla available, how many different veggie wraps can be made

Respuesta :

Answer:

The answer is "[tex]7.21 \times 10^{37}[/tex]".

Step-by-step explanation:

[tex]\to ^{n}_{C_r}=\frac{n!}{r!(n-r)!}[/tex]

       [tex]=^{66}_{C_{33}} \times ^{66}_{C_{22}} \times ^{55}_{C_{1}} \\\\=\frac{66!}{33! (66-33)!} \times \frac{66!}{22! (66-22)!} \times \frac{55!}{1! (55-1)!}\\\\=\frac{66!}{33! (33)!} \times \frac{66!}{22! (44)!} \times \frac{55!}{1! (54)!}\\\\=\frac{66!}{33! (33)!} \times \frac{66!}{22! (44)!} \times \frac{55\times 54!}{1! (54)!}\\\\=\frac{66!}{33! (33)!} \times \frac{66!}{22! (44)!} \times 55\\\\= 7219428434016265740 \times 182183167981760400\times 55\\\\[/tex]

       [tex]= 7.21 \times 10^{18} \times 1.82\times10^{17}\times 55\\\\= 7.21 \times 10^{35} \times 1.82\times 55\\\\=721.721 \times 10^{35}\\\\=7.21\times 10^{37}[/tex]