The impeller shaft of a fluid agitator transmits 20 kW at 430 rpm. If the allowable shear stress in the impeller shaft must be limited to 65 MPa, determine (a) the minimum diameter required for a solid impeller shaft. (b) the maximum inside diameter permitted for a hollow impeller shaft if the outside diameter is 36 mm. (c) the percent savings in weight realized if the hollow shaft is used instead of the solid shaft. (Hint: The weight of a shaft is proportional to its cross-sectional area.)

Respuesta :

Given :

Power, P = 20 kW

Speed, N = 430 rpm

Allowable shear stress, τ = 65 MPa

Torque in the shaft is given by :

[tex]$P=\frac{2 \pi NT}{60}$[/tex]

[tex]$T=\frac{60 \times 20 \times 10^3}{2 \pi \times 430}$[/tex]

T = 444.37 N.m

Diameter of the solid shaft is

[tex]$d=\sqrt[3]{\frac{16 T}{\pi \tau}}[/tex]

[tex]$d=\sqrt[3]{\frac{16 \times 444.37}{3.14 \times 65}}[/tex]

[tex]$d=\sqrt[3]{34.83} $[/tex]

d = 3.265 m

d = 326.5 mm

Internal diameter of the hollow shaft is :

[tex]$\frac{T}{\frac{\pi}{32} \left( d_0^4 - d_i^4 \right)}=\frac{\tau}{d_0/2}$[/tex]

[tex]$\frac{444.37}{\frac{3.14}{32} \left( 0.036^4 - d_i^4 \right)}=\frac{65 \times 10^6}{0.036/2}$[/tex]

[tex]$\frac{444.37}{0.09 \left( 1.6 \times 10^{-6} - d_i^4 \right)}=\frac{65 \times 10^6}{0.018}$[/tex]

[tex]$\frac{7.99}{ \left( 1.6 \times 10^{-6} - d_i^4 \right)}=5850000$[/tex]

[tex]$1.3\times 10^{-6} = 1.6 \times 10^{-6} - d_i^4 \right)}$[/tex]

[tex]$d_i^4=300000$[/tex]

[tex]$d_i = 23.40$[/tex] mm

Percentage savings in the weight is given by :

Percentage saving = [tex]$\frac{W_{solid}-W_{hollow}}{W_{solid}}\times100$[/tex]

                                 [tex]$=\frac{V_{solid}-V_{hollow}}{V_{solid}}\times100$[/tex]

                                 [tex]$=\frac{d^2 - (d_0^2 - d_i^2)}{d^2} \times 100$[/tex]

                               [tex]$=\frac{(326.5)^2 - (0.036^2 - (32.40)^2)}{(326.5)^2} \times 100$[/tex]

                                 [tex]$=\frac{106602 - \left(1.29 \times 10^{-3} - 1049.76 \right)}{106602} \times 100$[/tex]

                                  [tex]$=\frac{106602 - 1049 }{106602} \times 100$[/tex]

                                  [tex]$=\frac{105553 }{106602} \times 100$[/tex]

                                  = 99.01 %