Use the information below to complete the problem: p(x) = (1)/(x + 1)
and q(x) = (1)/(x - 1)
Perform the operation and show that it results in another rational expression.

p(x) - q(x)

Respuesta :

Given:

The functions are:

[tex]p(x)=\dfrac{1}{x+1}[/tex]

[tex]q(x)=\dfrac{1}{x-1}[/tex]

To find:

The rational expression for [tex]p(x)-q(x)[/tex].

Solution:

We have,

[tex]p(x)=\dfrac{1}{x+1}[/tex]

[tex]q(x)=\dfrac{1}{x-1}[/tex]

Now,

[tex]p(x)-q(x)=\dfrac{1}{x+1}-\dfrac{1}{x-1}[/tex]

[tex]p(x)-q(x)=\dfrac{(x-1)-(x+1)}{(x+1)(x-1)}[/tex]

[tex]p(x)-q(x)=\dfrac{x-1-x-1}{x^2-1^2}[/tex]             [tex][\because a^2-b^2=(a-b)(a+b)][/tex]

[tex]p(x)-q(x)=\dfrac{-2}{x^2-1}[/tex]

Therefore, the required rational expression for [tex]p(x)-q(x)[/tex] is [tex]\dfrac{-2}{x^2-1}[/tex].