what would be the u to usub and what would be the steps to solving this integral?

Presumably, ln⁵(x) is the same as (ln(x))⁵ (as opposed to a quintuply-nested logarithm, log(log(log(log(log(x)))))).
Then substituting u = ln(x) and du = dx/x gives
[tex]\displaystyle\int\frac{\mathrm dx}{x\ln^5(x)} = \int\frac{\mathrm du}{u^5} = -\frac1{4u^4}+C = \boxed{-\frac1{4\ln^4(x)}+C}[/tex]