Answer:
y=2x-8
Step-by-step explanation:
Hi there!
We want to find an equation of the line parallel to y=2x-4 but has the same x intercept as 3x-4y=12
Parallel lines have the same slope, but different y intercepts
In y=2x-4, which is written in y=mx+b form, m is the slope and b is the y intercept
2 is in the place of where the slope would be, so the slope of that line is 2
That means the slope of the line parallel to it would also have a slope of 2
Here is the equation of the parallel line so far:
y=2x+b
We need to find b, the y intercept
Typically, we'll substitute a point into the equation to solve for b, but we don't have a point, yet
We're given that the new line has the same x intercept as 3x-4y=12
The x intercept is the point where the line passes through the x axis, and so the value of y at that point is 0
Let's substitute 0 for y in 3x-4y=12 and solve for x to find the x intercept
3x-4(0)=12
Multiply
3x=12
Divide both sides by 3
x=4
So the value of the x intercept is 4. As a point, it's (4,0)
So now substitute the values of the point (4,0) into y=2x+b to find b
0=2(4)+b
Multiply
0=8+b
Subtract 8 from both sides
-8=b
Substitute -8 as b into the equation
y=2x-8
Hope this helps!