Respuesta :

msm555

Answer:

Solution given:

Sin[tex]\theta_{1}=\frac{-24}{25}[/tex]

[tex]\frac{opposite}{hypotenuse}=\frac{-24}{25}[/tex]

equating corresponding value

opposite=-24

hypoyenuse=25

adjacent=x

By using Pythagoras law

hypotenuse²=opposite²+adjacent²

25²=(-24)²+x²

625=576+x²

x²=625-576

x=49

x=[tex]\sqrt{49}=7[/tex]

In IV quadrant

Cos angle is positive

Cos[tex]\theta_{1}=\frac{adjacent}{hypotenuse}[/tex]

Cos[tex]\theta_{1}=\frac{7}{25}[/tex]

Answer:

cos theta = 7/25

Step-by-step explanation:

sin theta = opp / hyp

We can find the adj side by using the pythagorean theorem

adj ^2 + opp ^2 = hyp^2

adj^2 + (-24)^2 = 25^2

adj^2 +576 = 625

adj^2 =625 -576

adj^2 = 49

Taking the square root of each side

adj = 7

Since we are in the 4th quadrant, adj is positive

cos theta = adj / hyp

cos theta = 7/25

Ver imagen wegnerkolmp2741o