Respuesta :

Answer:

[tex]\cos(11x)[/tex]

Step-by-step explanation:

Given

[tex]\cos 5x\ \cos 6x- \sin\ 5x \sin 6x[/tex]

Required

Express as a single function

In trigonometry, we have:

[tex]\cos(A + B) = \cos A\cos B - \sin A \sin B[/tex]

By comparison, we have

[tex]\cos(5x + 6x) = \cos 5x\cos 6x - \sin 5x \sin 6x[/tex]

[tex]\cos(11x) = \cos 5x\cos 6x - \sin 5x \sin 6x[/tex]