Respuesta :

msm555

Answer:

Solution given

Cos[tex]\displaystyle \theta_{1}=\frac{13}{15}[/tex]

consider Pythagorean theorem

[tex]\bold{Sin²\theta+Cos²\theta=1}[/tex]

Subtracting [tex]Cos²\theta[/tex]both side

[tex]\displaystyle Sin²\theta=1-Cos²\theta[/tex]

doing square root on both side we get

[tex]Sin\theta=\sqrt{1-Cos²\theta}[/tex]

Similarly

[tex]Sin\theta_{1}=\sqrt{1-Cos²\theta_{1}}[/tex]

Substituting value of [tex]Cos\theta_{1}[/tex]

we get

[tex]Sin\theta_{1}=\sqrt{1-(\frac{-13}{15})²}[/tex]

Solving numerical

[tex]Sin\theta_{1}=\sqrt{1-(\frac{169}{225})}[/tex]

[tex]Sin\theta_{1}=\sqrt{\frac{56}{225}}[/tex]

[tex]Sin\theta_{1}=\frac{\sqrt{56}}{\sqrt{225}}[/tex]

[tex]Sin\theta_{1}=\frac{\sqrt{2*2*14}}{\sqrt{15*15}}[/tex]

[tex]Sin\theta_{1}=\frac{2\sqrt{14}}{15}[/tex]

Since

In III quadrant sin angle is negative

[tex]\bold{Sin\theta_{1}=-\frac{2\sqrt{14}}{15}}[/tex]

Answer:

  • - 2√14/15

Step-by-step explanation:

In the quadrant III both the sine and cosine get negative value.

Use the identity:

  • sin²θ + cos²θ = 1

And consider negative value as mentioned above:

  • sinθ = - √(1 - cos²θ)
  • sinθ = - √(1 - (-13/15)²)
  • sinθ = - √(1 - 169/225)
  • sinθ = - √(56/225)
  • sinθ = - 2√14/15