Respuesta :
Answer:
B. 1 + ln 2 - ln x
General Formulas and Concepts:
Algebra II
- Natural logarithms ln and Euler's number e
- Logarithmic Property [Multiplying]: [tex]\displaystyle log(ab) = log(a) + log(b)[/tex]
- Logarithmic Property [Dividing]: [tex]\displaystyle log(\frac{a}{b}) = log(a) - log(b)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle ln(\frac{2e}{x})[/tex]
Step 2: Simplify
- Expand [Logarithmic Property - Dividing]: [tex]\displaystyle ln(\frac{2e}{x}) = ln(2e) - ln(x)[/tex]
- Expand [Logarithmic Property - Multiplying]: [tex]\displaystyle ln(\frac{2e}{x}) = ln(2) + ln(e) - ln(x)[/tex]
- Simplify: [tex]\displaystyle ln(\frac{2e}{x}) = ln(2) + 1 - ln(x)[/tex]
- Rewrite: [tex]\displaystyle ln(\frac{2e}{x}) = 1 + ln(2) - ln(x)[/tex]