Acellus Find the expected value of a random variable x having the following probability distribution. 0 1 2 3 4 5 Probability 1/8 1/4 3/16 1/4 1/16 1/8

Answer:
"2.25" is the right answer.
Step-by-step explanation:
According to the question,
The expected value will be:
= [tex]\sum_{i=1}^{n} x_i P(X = x_i)[/tex]
= [tex]0\times \frac{1}{8}+1\times \frac{1}{4}+2\times \frac{3}{16}+3\times \frac{1}{4}+4\times \frac{1}{6}+5\times \frac{1}{8}[/tex]
= [tex]0+\frac{1}{4}+\frac{3}{8} +\frac{3}{4}+\frac{1}{4} +\frac{5}{8}[/tex]
= [tex]\frac{1}{4} +\frac{8}{8} +\frac{4}{4}[/tex]
= [tex]\frac{1}{4} +1+1[/tex]
= [tex]0.25+2[/tex]
= [tex]2.25[/tex]
Thus the above is the right approach.