A bar of steel has the minimum properties Se = 40 kpsi, Sy = 60 kpsi, and Sut = 80 ksi. The bar is subjected to a steady torsional stress of 15 kpsi and an alternating bending stress of 25 ksi. Find the factor of safety guarding against a static failure, and either the factor of safety guarding against a fatigue failure or the expected life of the part. For the fatigue analysis use Modified Goodman criterion.

Respuesta :

Answer:

The correct solution is:

(a) 1.66

(b) 1.05

Explanation:

Given:

Bending stress,

[tex]\sigma_b = 25 \ kpsi[/tex]

Torsional stress,

[tex]\tau= 15 \ kpsi[/tex]

Yield stress of steel bar,

[tex]\delta_y = 60 \ kpsi[/tex]

As we know,

⇒ [tex]\sigma_{max}^' \ = \sqrt{\sigma_b^2 + 3 \gamma^2}[/tex]

        [tex]= \sqrt{(25)^2+3(15)^2}[/tex]

        [tex]=36.055 \ kpsi[/tex]

(a)

The factor of safety against static failure will be:

⇒ [tex]\eta_y = \frac{\delta_y}{\sigma_{max}^'}[/tex]

By putting the values, we get

        [tex]=\frac{60}{36.055}[/tex]

        [tex]=1.66[/tex]

(b)

According to the Goodman line failure,

[tex]\sigma_a = \sigma_b = 25 \ kpsi[/tex]

[tex]S_e = 40 \ kpsi[/tex]

[tex]\sigma_m = \sqrt{3} \tau[/tex]

     [tex]=\sqrt{3}\times 15[/tex]

     [tex]=26 \ kpsi[/tex]

[tex]Sut = 80 \ kpsi[/tex]

⇒ [tex]\frac{\sigma_a}{S_e} +\frac{\sigma_m}{Sut} =\frac{1}{\eta_y}[/tex]

      [tex]\frac{25}{40}+\frac{26}{80}=\frac{1}{\eta_y}[/tex]

              [tex]\eta_y = 1.05[/tex]