Any help, I would highly appreciate it

Answer:
B
Step-by-step explanation:
We are given the equation:
[tex]\displaystyle x(b-c) = y+x[/tex]
And that:
[tex]2b=3c=7[/tex]
And we want to find the value of y / x.
To start, subtract x from both sides in the first equation:
[tex]x(b-c) -x = y[/tex]
Divide both sides by x:
[tex]\displaystyle \frac{x(b-c)-x}{x}=\frac{y}{x}[/tex]
Simplify:
[tex]\displaystyle (b-c)-1 = \frac{y}{x}[/tex]
Next, in the second equation, divide everything by two:
[tex]\displaystyle b = \frac{3}{2} c = \frac{7}{2}[/tex]
Substitute:
[tex]\displaystyle \left(\frac{3}{2} c - c \right) - 1= \frac{y}{x}[/tex]
Simplify:
[tex]\displaystyle \frac{1}{2} c - 1 = \frac{y}{x}[/tex]
From the modified second equation, we can multipy both sides by 1/3:
[tex]\displaystyle \frac{1}{2} c = \frac{7}{6}[/tex]
Substitute:
[tex]\displaystyle \left(\frac{7}{6}\right) -1 = \frac{y}{x}[/tex]
Subtract:
[tex]\displaystyle \frac{y}{x} = \frac{7}{6} - \frac{6}{6} = \frac{1}{6}[/tex]
Therefore, our answer is B.