Respuesta :

Answer:

B

Step-by-step explanation:

We are given the equation:

[tex]\displaystyle x(b-c) = y+x[/tex]

And that:

[tex]2b=3c=7[/tex]

And we want to find the value of y / x.

To start, subtract x from both sides in the first equation:

[tex]x(b-c) -x = y[/tex]

Divide both sides by x:

[tex]\displaystyle \frac{x(b-c)-x}{x}=\frac{y}{x}[/tex]

Simplify:

[tex]\displaystyle (b-c)-1 = \frac{y}{x}[/tex]

Next, in the second equation, divide everything by two:

[tex]\displaystyle b = \frac{3}{2} c = \frac{7}{2}[/tex]

Substitute:

[tex]\displaystyle \left(\frac{3}{2} c - c \right) - 1= \frac{y}{x}[/tex]

Simplify:

[tex]\displaystyle \frac{1}{2} c - 1 = \frac{y}{x}[/tex]

From the modified second equation, we can multipy both sides by 1/3:

[tex]\displaystyle \frac{1}{2} c = \frac{7}{6}[/tex]

Substitute:

[tex]\displaystyle \left(\frac{7}{6}\right) -1 = \frac{y}{x}[/tex]

Subtract:

[tex]\displaystyle \frac{y}{x} = \frac{7}{6} - \frac{6}{6} = \frac{1}{6}[/tex]

Therefore, our answer is B.