Respuesta :

There's nothing preventing us from computing one integral at a time:

[tex]\displaystyle \int_0^{2-x} xyz \,\mathrm dz = \frac12xyz^2\bigg|_{z=0}^{z=2-x} \\\\ = \frac12xy(2-x)^2[/tex]

[tex]\displaystyle \int_0^{1-x}\int_0^{2-x}xyz\,\mathrm dz\,\mathrm dy = \frac12\int_0^{1-x}xy(2-x)^2\,\mathrm dy \\\\ = \frac14xy^2(2-x)^2\bigg|_{y=0}^{y=1-x} \\\\= \frac14x(1-x)^2(2-x)^2[/tex]

[tex]\displaystyle\int_0^1\int_0^{1-x}\int_0^{2-x}xyz\,\mathrm dz\,\mathrm dy\,\mathrm dx = \frac14\int_0^1x(1-x)^2(2-x)^2\,\mathrm dx[/tex]

Expand the integrand completely:

[tex]x(1-x)^2(2-x)^2 = x^5-6x^4+13x^3-12x^2+4x[/tex]

Then

[tex]\displaystyle\frac14\int_0^1x(1-x)^2(2-x)^2\,\mathrm dx = \left(\frac16x^6-\frac65x^5+\frac{13}4x^4-4x^3+2x^2\right)\bigg|_{x=0}^{x=1} \\\\ = \boxed{\frac{13}{240}}[/tex]