Felicia wants to build a kite with the shape shown. If AC is 60 cm, how many centimeters are in the length of BD?

Answer:
Step-by-step explanation:
By applying tangent rule in the given right triangle AOB,
tan(30°) = [tex]\frac{\text{Opposite side}}{\text{Adjacent side}}[/tex]
[tex]\frac{1}{\sqrt{3}}=\frac{BO}{OA}[/tex]
[tex]OA=BO(\sqrt{3})[/tex]
By applying tangent rule in the given right triangle BOC,
tan(60°) = [tex]\frac{OC}{BO}[/tex]
OC = BO(√3)
OA + OC = AC
[tex]BO(\sqrt{3})+BO(\sqrt{3}) =60[/tex]
2√3(BO) = 60
BO = 10√3
OC = BO(√3)
OC = (10√3)(√3)
OC = 30
By applying tangent rule in right triangle DOC,
tan(60°) = [tex]\frac{OD}{OC}[/tex]
OD = OC(√3)
OD = 30√3
Since, BD = BO + OD
BD = 10√3 + 30√3
BD = 40√3
≈ 69.3