Answer:
(a)
[tex]Length = 8x\\Width = 3x + 2\\Height = 2x + 1[/tex]
(b)
[tex]P(2) = 640[/tex]
(c)
[tex]Length= 16[/tex]
[tex]Width = 8[/tex]
[tex]Height =5[/tex]
(d)
[tex]Volume = 640[/tex]
Step-by-step explanation:
Given
[tex]P(x) = 48x^3 + 56x^2 + 16x[/tex]
Solving (a): The prism dimension
We have:
[tex]P(x) = 48x^3 + 56x^2 + 16x[/tex]
Factor out 8x
[tex]P(x) = 8x(6x^2 + 7x + 2)[/tex]
Expand 7x
[tex]P(x) = 8x(6x^2 + 4x + 3x + 2)[/tex]
Factorize
[tex]P(x) = 8x(2x(3x + 2) +1( 3x + 2))[/tex]
Factor out 3x + 2
[tex]P(x) = 8x(3x + 2)(2x + 1)[/tex]
So, the dimensions are:
[tex]Length = 8x\\Width = 3x + 2\\Height = 2x + 1[/tex]
Solving (b): The volume when [tex]x = 2[/tex]
We have:
[tex]P(x) = 48x^3 + 56x^2 + 16x[/tex]
[tex]P(2) = 48 * 2^3 + 56 * 2^2 + 16 * 2[/tex]
[tex]P(2) = 640[/tex]
Solving (c): The dimensions when [tex]x = 2[/tex]
We have:
[tex]Length = 8x\\Width = 3x + 2\\Height = 2x + 1[/tex]
Substitute 2 for x
[tex]Length=8*2[/tex]
[tex]Length= 16[/tex]
[tex]Width = 3*2+2[/tex]
[tex]Width = 8[/tex]
[tex]Height = 2*2 + 1[/tex]
[tex]Height =5[/tex]
So, we have:
[tex]Length= 16[/tex]
[tex]Width = 8[/tex]
[tex]Height =5[/tex]
Solving (d), the volume in (c)
We have:
[tex]Volume = Length * Width * Height[/tex]
[tex]Volume = 16 * 8 * 5[/tex]
[tex]Volume = 640[/tex]