(B) An airline knows from experience that the distribution of the number of suitcases that get lost each week on a certain route is normal with μ (mean) = 15.5 and σ (standard deviation) = 3.6. What is the probability that during a given week the airline will lose between 11 and 19 suitcases?

Respuesta :

Answer:

The correct answer is "0.7289".

Step-by-step explanation:

The given values are:

Mean,

[tex]\mu = 15.5[/tex]

Standard deviation,

[tex]\sigma = 3.6[/tex]

As we know,

⇒ [tex]z = \frac{(x - \mu)}{\sigma}[/tex]

The probability will be:

⇒ [tex]P(11< x< 19) = P(\frac{11-15.5}{3.6} <z<\frac{19-15.5}{3.6})[/tex]

                             [tex]=P(z< 0.9722)-P(z< -1.25)[/tex]

By using the z table, we get

                             [tex]=0.8345-0.1056[/tex]

                             [tex]=0.7289[/tex]