Respuesta :

Answer:

It is 10²

Step-by-step explanation:

[tex] \frac{ {10}^{3} . {10}^{4} }{ {10}^{5} } = \frac{ {10}^{(3 + 4)} }{ { {10}^{5} }} \\ \\ = \frac{10 {}^{7} }{ {10}^{5} } \\ \\ = {10}^{(7 - 5)} \\ = {10}^{2} [/tex]

Answer:

10²

Step-by-step explanation:

Using the rules of exponents

[tex]a^{m}[/tex] × [tex]a^{n}[/tex] = [tex]a^{(m+n)}[/tex]

[tex]\frac{a^{m} }{a^{n} }[/tex] = [tex]a^{(m-n)}[/tex]

Then

[tex]\frac{10^{3}.10^{4} }{10^{5} }[/tex]

= [tex]\frac{10^{(3+4)} }{10^{5} }[/tex]

= [tex]\frac{10^{7} }{10^{5} }[/tex]

= [tex]10^{(7-5)}[/tex]

= 10²