Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the identity

tan x = [tex]\frac{sinx}{cosx}[/tex]

Consider the left side

[tex]\frac{1-tan^2x}{1+tan^2x}[/tex]

= [tex]\frac{1-\frac{sin^2x}{cos^2x} }{1+\frac{sin^2x}{cos^2x} }[/tex] ( multiply numerator and denominator by cos²x to clear fractions

= [tex]\frac{cos^2x-sin^2x}{cos^2x+sin^2x}[/tex] ← ( cos²x + sin²x = 1 ]

= cos²x - sin²x

= right side , thus proven