6. Write an equation for the line that passes through (-4,4) and (8,8) in point-slope
form, slope-intercept form and standard form.
Point-Slope Form:
Slope-Intercept Form:
Standard Form:

Help!!

6 Write an equation for the line that passes through 44 and 88 in pointslope form slopeintercept form and standard form PointSlope Form SlopeIntercept Form Stan class=

Respuesta :

Answer:

Point-slope form:

[tex]y-4=\displaystyle\frac{1}{3}(x+4)[/tex]

[tex]y-8=m(x-8)[/tex]

Slope-intercept form:

[tex]y=\displaystyle\frac{1}{3}x+\displaystyle\frac{16}{3}[/tex]

Standard form:

[tex]-x+3y=16[/tex]

Step-by-step explanation:

Hi there!

1) Point-slope form

Point-slope form: [tex]y-y_1=m(x-x_1)[/tex] where [tex](x_1,y_1)[/tex] is a point on the line and m is the slope

First, determine the slope:

[tex]m=\displaystyle\frac{y_2-y_1}{x_2-x_1}[/tex] where two points on the line are [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex]

Plug in the points (-4,4) and (8,8):

[tex]m=\displaystyle\frac{8-4}{8-(-4)}\\\\m=\displaystyle\frac{8-4}{8+4}\\\\m=\displaystyle\frac{4}{12}\\\\m=\displaystyle\frac{1}{3}[/tex]

Therefore, the slope of the line is [tex]\displaystyle\frac{1}{3}[/tex]. Plug this into  [tex]y-y_1=m(x-x_1)[/tex]:

[tex]y-y_1=\displaystyle\frac{1}{3}(x-x_1)[/tex]

Now, for [tex](x_1,y_1)[/tex], we can either plug in (-4,4) or (8,8):

[tex]y-4=\displaystyle\frac{1}{3}(x-(-4))\\\\y-4=\displaystyle\frac{1}{3}(x+4)[/tex]

or

[tex]y-8=m(x-8)[/tex]

2) Slope-intercept form

Slope-intercept form: [tex]y=mx+b[/tex] where m is the slope and b is the y-intercept (the value of y when the line crosses the y-axis)

[tex]y=mx+b[/tex]

Plug in the slope

[tex]y=\displaystyle\frac{1}{3}x+b[/tex]

Now, to determine the y-intercept, plug in one of the points (-4,4) or (8,8) and solve for b:

[tex]8=\displaystyle\frac{1}{3}(8)+b\\\\8=\displaystyle\frac{8}{3}+b\\\\8-\displaystyle\frac{8}{3}=b\\\\b=\frac{16}{3}[/tex]

Therefore, the y-intercept is [tex]\displaystyle\frac{16}{3}[/tex]. Plug this back into [tex]y=\displaystyle\frac{1}{3}x+b[/tex]:

[tex]y=\displaystyle\frac{1}{3}x+\displaystyle\frac{16}{3}[/tex]

3) Standard form

Standard form:

[tex]Ax+By=C[/tex] where A, B, and C are numbers which are typically integers

[tex]y=\displaystyle\frac{1}{3}x+\displaystyle\frac{16}{3}[/tex]

Organize this into standard form:

[tex]-\displaystyle\frac{1}{3}x+y=\displaystyle\frac{16}{3}[/tex]

Multiply both sides by 3 so A, B, and C are integers:

[tex]-x+3y=16[/tex]

I hope this helps!