simply this equation

Answer:
b= x
Step-by-step explanation:
[tex]\boxed{ {x}^{m} \times {x}^{n} = {x}^{m + n} }[/tex]
Applying the law of indices above:
[tex]b = {x}^{ \frac{1}{4} } \times {x}^{ \frac{3}{4} } [/tex]
[tex]b = {x}^{ \frac{1}{4} + \frac{3}{4} } [/tex]
[tex]b = {x}^{ \frac{4}{4} } [/tex]
[tex]b = {x}^{1} [/tex]
∴b= x
Answer:
It is b = x
Step-by-step explanation:
From law of indices:
[tex] {a}^{b} \times {a}^{c} = {a}^{(b + c)} [/tex]
for, multiplication: same coefficients, we sum up the powers.
[tex]b = {x}^{ \frac{1}{4} } \times {x}^{ \frac{3}{4} } \\ b = {x}^{( \frac{1}{4} + \frac{3}{4} ) } \\ b = {x}^{ \frac{4}{4} } \\ b = {x}^{1} \\ b = x[/tex]