Respuesta :

Answer:

b= x

Step-by-step explanation:

[tex]\boxed{ {x}^{m} \times {x}^{n} = {x}^{m + n} }[/tex]

Applying the law of indices above:

[tex]b = {x}^{ \frac{1}{4} } \times {x}^{ \frac{3}{4} } [/tex]

[tex]b = {x}^{ \frac{1}{4} + \frac{3}{4} } [/tex]

[tex]b = {x}^{ \frac{4}{4} } [/tex]

[tex]b = {x}^{1} [/tex]

∴b= x

Answer:

It is b = x

Step-by-step explanation:

From law of indices:

[tex] {a}^{b} \times {a}^{c} = {a}^{(b + c)} [/tex]

for, multiplication: same coefficients, we sum up the powers.

[tex]b = {x}^{ \frac{1}{4} } \times {x}^{ \frac{3}{4} } \\ b = {x}^{( \frac{1}{4} + \frac{3}{4} ) } \\ b = {x}^{ \frac{4}{4} } \\ b = {x}^{1} \\ b = x[/tex]