Respuesta :
Answer:
[tex]\boxed {\boxed {\sf (3, \frac{7}{2}) \ or \ (3, 3.5)}}[/tex]
Step-by-step explanation:
The midpoint is the middle point of a line segment that bisects (splits into 2 equal parts) the line segment. When we calculate the midpoint, we basically find the average of the x-coordinate, then the average of the y-coordinates. The formula is:
[tex](\frac{x_1+x_2}{2} , \frac{y_1+y_2}{2})[/tex]
In this formula, (x₁, y₁) and (x₂, y₂) are the endpoints of the segment.
We are given the points (4,5) and (2,2). Match the value and the corresponding variable.
- x₁= 4
- y₁= 5
- x₂= 2
- y₂=2
Substitute these values into the formula.
[tex](\frac{4+2}{2} , \frac{5+2}{2})[/tex]
Solve the numerators.
- X-coordinate: 4+2= 6
- Y-coordinate: 5+2=7
[tex](\frac{6}{2}, \frac{7}{2})[/tex]
Divide.
[tex](3, \frac{7}{2}) \ or \ (3, 3.5)[/tex]
The midpoint of the line segment is (3, 7/2) or (3, 3.5).