Respuesta :

Answer:

&

Step-by-step explanation:

Answer:

[tex]\boxed {\boxed {\sf (3, \frac{7}{2}) \ or \ (3, 3.5)}}[/tex]

Step-by-step explanation:

The midpoint is the middle point of a line segment that bisects (splits into 2 equal parts) the line segment. When we calculate the midpoint, we basically find the average of the x-coordinate, then the average of the y-coordinates. The formula is:

[tex](\frac{x_1+x_2}{2} , \frac{y_1+y_2}{2})[/tex]

In this formula, (x₁, y₁) and (x₂, y₂) are the endpoints of the segment.

We are given the points (4,5) and (2,2). Match the value and the corresponding variable.

  • x₁= 4
  • y₁= 5
  • x₂= 2
  • y₂=2

Substitute these values into the formula.

[tex](\frac{4+2}{2} , \frac{5+2}{2})[/tex]

Solve the numerators.

  • X-coordinate: 4+2= 6
  • Y-coordinate: 5+2=7

[tex](\frac{6}{2}, \frac{7}{2})[/tex]

Divide.

[tex](3, \frac{7}{2}) \ or \ (3, 3.5)[/tex]

The midpoint of the line segment is (3, 7/2) or (3, 3.5).