Respuesta :

Answer:

  • 3t - 9

Step-by-step explanation:

Given:

  • g(t) = t + 5 and h(t) = 3t - 2

Find the composite function (g·h)(t):

  • (g·h)(t) = g(h(t)) = (3t - 2) + 5 = 3t + 3

Find (g·h)(-4 + t):

  • (g·h)(-4 + t) = g(h(-4 + t)) = 3(-4 + t) + 3 = -12 + 3t + 3 = 3t - 9
ItzTds

The given information is,

→ g(t) = t + 5

→ h(t) = 3t - 2

Now we have to,

find the composite function (g•h)(t),

→ (g•h)(t)

→ g(h(t))

→ (3t - 2) + 5

→ 3t + 3

Let's find the (g•h)(-4 + t):

→ (g•h)(-4 + t)

→ g(h(-4 + t))

→ 3(-4 + t) + 3

→ -12 + 3t + 3

→ 3t - 9

Hence, the value is 3t - 9.