Respuesta :
Answer:
- 3t - 9
Step-by-step explanation:
Given:
- g(t) = t + 5 and h(t) = 3t - 2
Find the composite function (g·h)(t):
- (g·h)(t) = g(h(t)) = (3t - 2) + 5 = 3t + 3
Find (g·h)(-4 + t):
- (g·h)(-4 + t) = g(h(-4 + t)) = 3(-4 + t) + 3 = -12 + 3t + 3 = 3t - 9
The given information is,
→ g(t) = t + 5
→ h(t) = 3t - 2
Now we have to,
find the composite function (g•h)(t),
→ (g•h)(t)
→ g(h(t))
→ (3t - 2) + 5
→ 3t + 3
Let's find the (g•h)(-4 + t):
→ (g•h)(-4 + t)
→ g(h(-4 + t))
→ 3(-4 + t) + 3
→ -12 + 3t + 3
→ 3t - 9
Hence, the value is 3t - 9.