Respuesta :
Step-by-step explanation:
Q1 . (f+g)(x) = f(x) + g(x)
=4x-4 +2x^2 -3x
= 2x^2 + x -4
Q2. (f-g)(x) = f(x) - g(x)
= 2x^2−2 - (4x+1)
= 2x^2 -2 -4x -1
= 2x^2 - 4x -3
Q3. h(x)=3x−3 and g(x)=x^2+3
(h.g)(x) = h(x) × g(x)
= (3x-3) × (x^2 + 3)
=3x^3 -3x^2 + 9x -9
Q4.f(x)=x+4 and g(x)=x+6
(f/g)(x) = f(x) ÷ g(x)
= x+4 / x+6
the domain restriction is x>-6
x<-6
x doesn't equal (-6)
If the two function f(x) and g(x) are to be combined, use basic arithmetic rules,
(f + g)(x) = f(x) + g(x)
(f - g)(x) = f(x) - g(x)
[tex](\frac{f}{g})(x)=\frac{f(x)}{g(x)}[/tex]
(f . g)(x) = f(x) × g(x)
Question 1
f(x) = 4x - 4 and g(x) = 2x² - 3x
[tex](f+g)(x)=f(x)+g(x)[/tex]
Therefore, [tex](f+g)(x)=(4x-4)+(2x^2-3x)[/tex]
[tex]=2x^2+x-4[/tex]
Question 2
f(x) = 2x² - 2 and g(x) = 4x + 1
Since, (f - g)(x) = f(x) - g(x)
Therefore, (f - g)(x) = (2x² - 2) - (4x + 1)
= 2x² - 2 - 4x - 1
= 2x² - 4x - 3
Question 3
h(x) = 3x - 3 and g(x) = x² + 3
Since, (h - g)(x) = h(x) - g(x)
Therefore, (h - g)(x) = (3x - 3) - (x² + 3)
= 3x - 3 - x² - 3
= -x² + 3x - 6
Question 4
F(x) = x + 4 and g(x) = x + 6
Since, [tex](\frac{f}{g})(x)=\frac{f(x)}{g(x)}[/tex]
Therefore, [tex](\frac{f}{g})(x)=\frac{x+4}{x+6}[/tex]
Learn more,
https://brainly.com/question/7447002