Respuesta :

Answer:

r =√[3V/(π h)]

Step-by-step explanation:

V = ⅓ × π r²h

=> multiplied by 3

3V = π r² h

=> find r²

r² = 3V/(π h)

=> find r

r =[3V/(π h)]

Answer:

[tex]r=\sqrt{\dfrac{3V}{\pi h}}[/tex]

Step-by-step explanation:

Given equation:

[tex]V=\dfrac{1}{3} \times \pi r^2 h[/tex]

To isolate [tex]r[/tex], multiply both sides by 3:

[tex]\implies V \times 3=\dfrac{1}{3} \times \pi r^2 h \times 3[/tex]

[tex]\implies 3V= \pi r^2 h[/tex]

Divide both sides by [tex]\pi h[/tex]:

[tex]\implies \dfrac{3V}{\pi h}= \dfrac{\pi r^2 h}{\pi h}[/tex]

[tex]\implies \dfrac{3V}{\pi h}=r^2[/tex]

Square root both sides:

[tex]\implies \sqrt{r^2}=\sqrt{\dfrac{3V}{\pi h}}[/tex]

As the radius is positive only:

[tex]\textsf{Apply radical rule} \quad \sqrt{a^2}=a, \quad a \geq 0[/tex]

[tex]\implies r=\sqrt{\dfrac{3V}{\pi h}}[/tex]